PUBLICATIONS
Google_Scholar_logo_2015.png
2025


(1) Park, W., Choi, J., Hwang, J., Kim, S., Kim, Y., Shim, M. K., Park, W., Yu, S., Jung, S., Yang, Y., & Kweon, D. H. (2025). Apolipoprotein Fusion Enables Spontaneous Functionalization of mRNA Lipid Nanoparticles with Antibody for Targeted Cancer Therapy. ACS nano, 19(6), 6412–6425. https://doi.org/10.1021/acsnano.4c16562

2024


(1) Kim, E. H., Ryu, Y., Choi, J., Park, D., Lee, J. W., Chi, S. G., Kim, S. H., & Yang, Y. (2024). Targeting miR-21 to Overcome P-glycoprotein Drug Efflux in Doxorubicin-Resistant 4T1 Breast Cancer. Biomaterials research, 28, 0095. 

(2) Choi, J., Park, B., Park, J. Y., Shin, D., Lee, S., Yoon, H. Y., Kim, K., Kim, S. H., Kim, Y., Yang, Y., & Shim, M. K. (2024). Light-Triggered PROTAC Nanoassemblies for Photodynamic IDO Proteolysis in Cancer Immunotherapy. Advanced materials, 36(38), e2405475. https://doi.org/10.1002/adma.202405475

(3) Jang, H., Choi, J., Park, D., Han, G., Kim, E. H., Kim, K., Kim, S. H., Shim, M. K., & Yang, Y. (2024). Milk-derived extracellular vesicles enable gut-to-tumor oral delivery of tumor-activated doxorubicin prodrugs. Theranostics, 14(14), 5413–5428. 
https://doi.org/10.7150/thno.97269

(4) Lee, J. W., Yoon, H. Y., Ko, Y. J., Kim, E. H., Song, S., Hue, S., Gupta, N., Malin, D., Kim, J., Kong, B., Kim, S., Kim, I. S., Kwon, I. C., Yang, Y., & Kim, S. H. (2024). Dual-Action Protein-siRNA Conjugates for Targeted Disruption of CD47-Signal Regulatory Protein α Axis in Cancer Therapy. ACS nano, 18(33), 22298–22315. 

(5) Choi, J., Jang, H., Park, D., Park, B., Jang, Y., Lee, S., Kim, S. H., Shim, M. K., & Yang, Y. (2024). Oral delivery of photoresponsive Milk-Derived exosomes for the local therapy of glioblastoma. ACS Materials Letters, 6(9), 4019–4027. 

(6) Kim, E. H., Choi, J., Jang, H., Kim, Y., Lee, J. W., Ryu, Y., Choi, J., Choi, Y., Chi, S. G., Kwon, I. C., Yang, Y., & Kim, S. H. (2024). Targeted delivery of anti-miRNA21 sensitizes PD-L1high tumor to immunotherapy by promoting immunogenic cell death. Theranostics, 14(10), 3777–3792. https://doi.org/10.7150/thno.97755

(7) Kim, Y., Choi, J., Kim, E. H., Park, W., Jang, H., Jang, Y., Chi, S. G., Kweon, D. H., Lee, K., Kim, S. H., & Yang, Y. (2024). Design of PD-L1-Targeted Lipid Nanoparticles to Turn on PTEN for Efficient Cancer Therapy. Advanced science, 11(22), e2309917. 

(8) Han, G., Kim, H., Jang, H., Kim, E. S., Kim, S. H., & Yang, Y. (2023). Oral TNF-α siRNA delivery via milk-derived exosomes for effective treatment of inflammatory bowel disease. Bioactive materials, 34, 138–149. 
https://doi.org/10.1016/j.bioactmat.2023.12.010
2023


(1) Jang, H., Kim, H., Kim, E. H., Han, G., Jang, Y., Kim, Y., Lee, J. W., Shin, S. C., Kim, E. E., Kim, S. H., & Yang, Y. (2023). Post-insertion technique to introduce targeting moieties in milk exosomes for targeted drug delivery. Biomaterials research, 27(1), 124. 

(2) Lee, J. W., Choi, J., Kim, E. H., Choi, J., Kim, S. H., & Yang, Y. (2023). Design of siRNA Bioconjugates for Efficient Control of Cancer-Associated Membrane Receptors. ACS omega, 8(39), 36435–36448. 

(3) Kim, G. B., Kim, S., Hwang, Y. H., Kim, S., Lee, I., Kim, S. A., Goo, J., Yang, Y., Jeong, C., Nam, G. H., & Kim, I. S. (2023). Harnessing Oncolytic Extracellular Vesicles for Tumor Cell-Preferential Cytoplasmic Delivery of Misfolded Proteins for Cancer Immunotherapy. Small, 19(37), e2300527. 

(4) Kong, B., Kim, Y., Kim, E. H., Suk, J. S., & Yang, Y. (2023). mRNA: A promising platform for cancer immunotherapy. Advanced drug delivery reviews, 199, 114993. 

(5) Choi, J., Jang, H., Choi, J., Choi, Y., Yang, Y., Shim, M. K., & Kim, S. H. (2023). Immune checkpoint-targeted drug conjugates: A promising tool for remodeling tumor immune microenvironment. Journal of controlled release, 359, 85–96. 

(6) Kim, H., Park, H. J., Chang, H. W., Back, J. H., Lee, S. J., Park, Y. E., Kim, E. H., Hong, Y., Kwak, G., Kwon, I. C., Lee, J. E., Lee, Y. S., Kim, S. Y., Yang, Y., & Kim, S. H. (2022). Exosome-guided direct reprogramming of tumor-associated macrophages from protumorigenic to antitumorigenic to fight cancer. Bioactive materials, 25, 527–540. 
2022


(1) Lee, J. W., Choi, J., Choi, Y., Kim, K., Yang, Y., Kim, S. H., Yoon, H. Y., & Kwon, I. C. (2022). Molecularly engineered siRNA conjugates for tumor-targeted RNAi therapy. Journal of controlled release: official journal of the Controlled Release Society, 351, 713–726. https://doi.org/10.1016/j.jconrel.2022.09.040

(2) Kim, H., Back, J. H., Han, G., Lee, S. J., Park, Y. E., Gu, M. B., Yang, Y., Lee, J. E., & Kim, S. H. (2022). Extracellular vesicle-guided in situ reprogramming of synovial macrophages for the treatment of rheumatoid arthritis. Biomaterials, 286, 121578. https://doi.org/10.1016/j.biomaterials.2022.121578

(3) Kim, Y., Kim, H., Kim, E. H., Jang, H., Jang, Y., Chi, S., Yang, Y., & Kim, S. H. (2022). The potential of Cell-Penetrating peptides for mRNA delivery to cancer cells. Pharmaceutics, 14(6), 1271. 

(4) Kim, E. H., Lee, J., Kwak, G., Jang, H., Kim, H., Cho, H., Jang, Y., Choi, J., Chi, S. G., Kim, K., Kwon, I. C., Yang, Y., & Kim, S. H. (2022). PDL1-binding peptide/anti-miRNA21 conjugate as a therapeutic modality for PD-L1high tumors and TAMs. Journal of controlled release : official journal of the Controlled Release Society, 345, 62–74. 

(5) Kwak, G., Cheng, J., Kim, H., Song, S., Lee, S. J., Yang, Y., Jeong, J. H., Lee, J. E., Messersmith, P. B., & Kim, S. H. (2022). Sustained Exosome-Guided Macrophage Polarization Using Hydrolytically Degradable PEG Hydrogels for Cutaneous Wound Healing: Identification of Key Proteins and MiRNAs, and Sustained Release Formulation. Small, 18(15), e2200060. 

(6) Kim, H., Jang, Y., Kim, E. H., Jang, H., Cho, H., Han, G., Song, H. K., Kim, S. H., & Yang, Y. (2022). Potential of Colostrum-Derived Exosomes for Promoting Hair Regeneration Through the Transition From Telogen to Anagen Phase. Frontiers in cell and developmental biology, 10, 815205. https://doi.org/10.3389/fcell.2022.815205

(7) Kim, H., Kim, D. E., Han, G., Lim, N. R., Kim, E. H., Jang, Y., Cho, H., Jang, H., Kim, K. H., Kim, S. H., & Yang, Y. (2022). Harnessing the Natural Healing Power of Colostrum: Bovine Milk-Derived Extracellular Vesicles from Colostrum Facilitating the Transition from Inflammation to Tissue Regeneration for Accelerating Cutaneous Wound Healing. Advanced healthcare materials, 11(6), e2102027. 

(8) Kim, H., Song, B. W., Park, S. J., Choi, S. W., Moon, H., Hwang, K. C., Kang, S. W., Moon, S. H., Yang, Y., Kwon, I. C., & Kim, S. H. (2022). Ultraefficient extracellular vesicle-guided direct reprogramming of fibroblasts into functional cardiomyocytes. Science advances, 8(8), eabj6621. https://doi.org/10.1126/sciadv.abj6621

(9) Han, G., Kim, H., Kim, D. E., Ahn, Y., Kim, J., Jang, Y. J., Kim, K., Yang, Y., & Kim, S. H. (2022). The Potential of Bovine Colostrum-Derived Exosomes to Repair Aged and Damaged Skin Cells. Pharmaceutics, 14(2), 307. 

(10) Han, G., Kim, H., Kim, D. E., Ahn, Y., Kim, J., Jang, Y. J., Kim, K., Yang, Y., & Kim, S. H. (2022). The Potential of Bovine Colostrum-Derived Exosomes to Repair Aged and Damaged Skin Cells. Pharmaceutics, 14(2), 307. 

2021


(1) Jang, H., Kim, E. H., Chi, S. G., Kim, S. H., & Yang, Y. (2021). Nanoparticles Targeting Innate Immune Cells in Tumor Microenvironment. International journal of molecular sciences, 22(18), 10009. 

(2) Kim, H., Jang, H., Cho, H., Choi, J., Hwang, K. Y., Choi, Y., Kim, S. H., & Yang, Y. (2021). Recent Advances in Exosome-Based Drug Delivery for Cancer Therapy. Cancers, 13(17), 4435. 

(3) Kim, M. J., Kim, H., Gao, X., Ryu, J. H., Yang, Y., Kwon, I. C., Roberts, T. M., & Kim, S. H. (2021). Multi-targeting siRNA nanoparticles for simultaneous inhibition of PI3K and Rac1 in PTEN-deficient prostate cancer. Journal of Industrial and Engineering Chemistry, 99, 196–203. https://doi.org/10.1016/j.jiec.2021.04.024

(4) Kwak, G., Kim, H., Park, J., Kim, E. H., Jang, H., Han, G., Wang, S. Y., Yang, Y., Chan Kwon, I., & Kim, S. H. (2021). A Trojan-Horse Strategy by In Situ Piggybacking onto Endogenous Albumin for Tumor-Specific Neutralization of Oncogenic MicroRNA. ACS nano, 15(7), 11369–11384. https://doi.org/10.1021/acsnano.1c00799

(5) Hwang, H. S., Kim, H., Han, G., Lee, J. W., Kim, K., Kwon, I. C., Yang, Y., & Kim, S. H. (2021). Extracellular Vesicles as Potential Therapeutics for Inflammatory Diseases. International journal of molecular sciences, 22(11), 5487. 

(6) Kim, H., Lee, J. W., Han, G., Kim, K., Yang, Y., & Kim, S. H. (2021). Extracellular Vesicles as Potential Theranostic Platforms for Skin Diseases and Aging. Pharmaceutics, 13(5), 760. 
2020


(1) Kim, H., Kim, E. H., Kwak, G., Chi, S. G., Kim, S. H., & Yang, Y. (2020). Exosomes: Cell-Derived Nanoplatforms for the Delivery of Cancer Therapeutics. International journal of molecular sciences​, 22(1), 14. 

(2) Nam, G., Pahk, K. J., Jeon, S., Park, H., Kim, G. B., Oh, S. J., Kim, K., Kim, H., & Yang, Y. (2020). Investigation of the potential immunological effects of boiling histotripsy for cancer treatment. Advanced Therapeutics, 3(8). https://doi.org/10.1002/adtp.201900214

(3) Ko, Y. J., Lee, J. W., Kim, H., Cho, E., Yang, Y., Kim, I. S., Kim, S. H., & Kwon, I. C. (2020). Versatile activatable vSIRPα-probe for cancer-targeted imaging and macrophage-mediated phagocytosis of cancer cells. Journal of controlled release : official journal of the Controlled Release Society, 323, 376–386. 

(4) Kim, G. B., Nam, G. H., Hong, Y., Woo, J., Cho, Y., Kwon, I. C., Yang, Y., & Kim, I. S. (2020). Xenogenization of tumor cells by fusogenic exosomes in tumor microenvironment ignites and propagates antitumor immunity. Science advances, 6(27), eaaz2083. 

(5) Jeong, Y., Kim, G. B., Ji, Y., Kwak, G. J., Nam, G. H., Hong, Y., Kim, S., An, J., Kim, S. H., Yang, Y., Chung, H. S., & Kim, I. S. (2020). Dendritic cell activation by an E. coli-derived monophosphoryl lipid A enhances the efficacy of PD-1 blockade. Cancer letters, 472, 19–28. https://doi.org/10.1016/j.canlet.2019.12.012

(6) Wang, S. Y., Kim, H., Kwak, G., Jo, S. D., Cho, D., Yang, Y., Kwon, I. C., Jeong, J. H., & Kim, S. H. (2020). Development of microRNA-21 mimic nanocarriers for the treatment of cutaneous wounds. Theranostics, 10(7), 3240–3253. 
2019


(1) Hong, Y., Kim, Y. K., Kim, G. B., Nam, G. H., Kim, S. A., Park, Y., Yang, Y., & Kim, I. S. (2019). Degradation of tumour stromal hyaluronan by small extracellular vesicle-PH20 stimulates CD103+ dendritic cells and in combination with PD-L1 blockade boosts anti-tumour immunity. Journal of extracellular vesicles, 8(1), 1670893. 

(2) Kim, H., Wang, S. Y., Kwak, G., Yang, Y., Kwon, I. C., & Kim, S. H. (2019). Exosome-Guided Phenotypic Switch of M1 to M2 Macrophages for Cutaneous Wound Healing. Advanced science, 6(20), 1900513. https://doi.org/10.1002/advs.201900513

(3) Nam, G. H., Hong, Y., Choi, Y., Kim, G. B., Kim, Y. K., Yang, Y., & Kim, I. S. (2019). An optimized protocol to determine the engulfment of cancer cells by phagocytes using flow cytometry and fluorescence microscopy. Journal of immunological methods, 470, 27–32. https://doi.org/10.1016/j.jim.2019.04.007

(4) Pahk, K. J., Shin, C. H., Bae, I. Y., Yang, Y., Kim, S. H., Pahk, K., Kim, H., & Oh, S. J. (2019). Boiling Histotripsy-induced Partial Mechanical Ablation Modulates Tumour Microenvironment by Promoting Immunogenic Cell Death of Cancers. Scientific reports, 9(1), 9050. 

(5) Kong, B., Yang, Y., & Kweon, D. H. (2019). Dynamic Light Scattering Analysis to Dissect Intermediates of SNARE-Mediated Membrane Fusion. Methods in molecular biology, 1860, 53–69. 
2018


(1) Yang, Y., Hong, Y., Cho, E., Kim, G. B., & Kim, I. S. (2018). Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery. Journal of extracellular vesicles, 7(1), 1440131. 

(2) Kih, M., Lee, E. J., Lee, N. K., Kim, Y. K., Lee, K. E., Jeong, C., Yang, Y., Kim, D. H., & Kim, I. S. (2018). Designed trimer-mimetic TNF superfamily ligands on self-assembling nanocages. Biomaterials, 180, 67–77. 

(3) Yoon, H. Y., Selvan, S. T., Yang, Y., Kim, M. J., Yi, D. K., Kwon, I. C., & Kim, K. (2018). Engineering nanoparticle strategies for effective cancer immunotherapy. Biomaterials, 178, 597–607. 

(4) Cho, E., Nam, G. H., Hong, Y., Kim, Y. K., Kim, D. H., Yang, Y., & Kim, I. S. (2018). Comparison of exosomes and ferritin protein nanocages for the delivery of membrane protein therapeutics. Journal of controlled release : official journal of the Controlled Release Society, 279, 326–335. https://doi.org/10.1016/j.jconrel.2018.04.037

(5) Nam, G. H., Lee, E. J., Kim, Y. K., Hong, Y., Choi, Y., Ryu, M. J., Woo, J., Cho, Y., Ahn, D. J., Yang, Y., Kwon, I. C., Park, S. Y., & Kim, I. S. (2018). Combined Rho-kinase inhibition and immunogenic cell death triggers and propagates immunity against cancer. Nature communications, 9(1), 2165. https://doi.org/10.1038/s41467-018-04607-9

(6) Yang, Y., Kong, B., Jung, Y., Park, J. B., Oh, J. M., Hwang, J., Cho, J. Y., & Kweon, D. H. (2018). Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor-Derived Peptides for Regulation of Mast Cell Degranulation. Frontiers in immunology, 9, 725. https://doi.org/10.3389/fimmu.2018.00725

(7) Lee, E. J., Nam, G. H., Lee, N. K., Kih, M., Koh, E., Kim, Y. K., Hong, Y., Kim, S., Park, S. Y., Jeong, C., Yang, Y., & Kim, I. S. (2018). Nanocage-Therapeutics Prevailing Phagocytosis and Immunogenic Cell Death Awakens Immunity against Cancer. Advanced materials, 30(10), 10.1002/adma.201705581.

(8) Hong, Y., Nam, G., Koh, E., Jeon, S., Kim, G. B., Jeong, C., Kim, D., Yang, Y., & Kim, I. (2018). Exosome as a vehicle for delivery of membrane protein therapeutics, PH20, for enhanced tumor penetration and antitumor efficacy. Advanced Functional Materials, 28(17). https://doi.org/10.1002/adfm.201801301
2017


(1) Lee, N. K., Lee, E. J., Kim, S., Nam, G. H., Kih, M., Hong, Y., Jeong, C., Yang, Y., Byun, Y., & Kim, I. S. (2017). Ferritin nanocage with intrinsically disordered proteins and affibody: A platform for tumor targeting with extended pharmacokinetics. Journal of controlled release , 267, 172–180. 

(2) Jo, S. D., Nam, G., Kwak, G., Yang, Y., & Kwon, I. C. (2017). Harnessing designed nanoparticles: Current strategies and future perspectives in cancer immunotherapy. Nano Today, 17, 23–37. 

(3) Kim, S. M., Yang, Y., Oh, S. J., Hong, Y., Seo, M., & Jang, M. (2017). Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. Journal of controlled release : official journal of the Controlled Release Society, 266, 8–16. https://doi.org/10.1016/j.jconrel.2017.09.013

(4) Koh, E., Lee, E. J., Nam, G. H., Hong, Y., Cho, E., Yang, Y., & Kim, I. S. (2017). Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis. Biomaterials, 121, 121–129. 

(5) Yang, Y., Hong, Y., Nam, G. H., Chung, J. H., Koh, E., & Kim, I. S. (2017). Virus-Mimetic Fusogenic Exosomes for Direct Delivery of Integral Membrane Proteins to Target Cell Membranes. Advanced materials, 29(13), 10.1002/adma.201605604. 
https://doi.org/10.1002/adma.201605604